The Throwing Athlete
Biomechanics: Function & Dysfunction

R. Scott Cook, DO, FAOASM
Director, St. Joseph Sports Medicine Fellowship
Commonwealth Orthopaedic Associates

Presentation Goals

- Provide an understanding of normal Scapular Function and Motion.
- Discuss the importance of the Scapula within the kinetic chain of the
 throwing athlete.
- Describe clinical examination techniques for evaluation of scapular
 function.
- Define Scapular Dyskinesis and the role it plays in shoulder injury and
 pathology.

Normal Scapular Function

Scapular Osseous Components

- Arise from several ossification centers with various stages of
 coalescence:
 - Coracoid: 14-18yo
 - Acromion: 19-20yo
 - Inferior Angle: 18-20yo
 - Glenoid Fossa: 20-25yo
Normal Scapular Function

Basic Anatomy: Scapula is enveloped by multiple muscular layers.

- **Anterior Scapular Muscle Attachments:**
 - Triceps
 - Biceps (Short and Long Heads)
 - Coracobrachialis
 - Subscapularis
 - Serratus Anterior
 - Pectoralis Minor
 - Omohyoid

- **Posterior Scapular Muscle Attachments:**
 - Triceps
 - Biceps (Long Head)
 - Omohyoid
 - Trapezius
 - Supraspinatus
 - Infraspinatus
 - Teres Major
 - Teres Minor
 - Levator Scapulae
 - Latissimus Dorsi
 - Deltoid
 - Rhomboideus Major and Minor

Scapular Bursae:

- **Infraserratus Bursa (Bursa Muscula Serrata):**
 - Lies between Serratus Anterior and Chest Wall
 - Inflamed = Inferior Angle Pain

- **Supraserratus Bursa (Bursa Muscula Angularis Superioris Scapulae):**
 - Lies between Subscapularis and Serratus Anterior
 - Inflamed = Superior Angle Pain

- **Scapulotrapezial Bursa:**
 - Lies between Supraspinatus and Trapezius
 - Contains the Spinal Accessory Nerve.
Normal Scapular Function

- **Scapular Anatomic Positioning at Rest:**
 - Anteriorly Rotated (relative to trunk) approx 30°
 - Medial Border Rotated
 - Inferior Pole Diverged 3-5° from Spine
 - Anteriorly Tilted 20° in sagittal plane

Normal Scapular Function

- **Scapulothoracic Anatomy & Function:**
 - **Scapular Postural Support**
 - Levator Scapulae & Upper Trapezius
 - **Scapular Retraction**
 - Middle Trapezius & Rhomboids
 - **Scapular Protraction**
 - Serratus Anterior
 - **Upward Scapular Rotation**
 - Serratus Anterior & Trapezius
 - **Scapular Elevation**
 - Upper Trapezius & Levator Scapulae

Normal Scapular Function

- A. Scapular Posterior Tilting
- B. Scapular Superior Rotation
- C. Scapular External Rotation
- D. Clavicular Elevation
- E. Clavicular Protraction
Normal Scapular Function

Dynamic Anatomy:
- Humeral movement in relation to Glenoid.
- Glenohumeral Ligament and Labral static constraint on Humeral Translation.
- Rotator Cuff dynamic constraint on Glenohumeral Motion.

The Scapula is intimately involved in each one of these functions.

Glenohumeral Articulation:
- Scapula must continually move to maintain instant center of rotation.
- Proper glenoid alignment optimizes function of articulations and rotator cuff to allow concentric GH-Motion.
- Scapulothoracic positioning determines position and inclination of both Glenoid and Inferior Glenohumeral Ligament.
- Improper alignment can lead to GH Instability.

Thoracic Wall Articulation:
- Scapular Retraction (external rotation) facilitate cocking position.
- Scapular Lateral Protraction (internal rotation) allows acceleration.
- Scapular Anterior Thoracic Translation allows maintenance of normal GH position and dissipation of deceleration forces.
Normal Scapular Function

Acromial Elevation
- Serratus anterior activation results in traction related superior acromial elevation.
- Occurs during cocking and acceleration phases of throwing, and during arm elevation.
- Allows for reduction of impingement and coracoacromial arch compression.

Normal Scapular Function

Kinetic Chain
- Scapula serves as a link in Proximal-to-Distal sequencing of velocity, energy, and forces of shoulder function.
 - Generation, Summation, Transference
 - Scapula serves as pivotal link of transference of large forces/high energy from lower body/core to the arm/hand.
 - Also allows arm stabilization to absorb force loads through long lever dynamics to reduce injury.

Normal Scapular Dynamics:
- Bilateral Posterior Tilting, External Rotation, & slight Superior Translation during elevation of arm.
- Symmetrical motion patterns.
- No prominent medial or superior scapular borders.
Scapular Dyskinesis

Scapular Dyskinesis
- Alterations in *STATIC* scapular position and *DYNAMIC* scapular motion resulting in scapular asymmetry in gross postural assessment and function movement.

Scapular Dyskinesis

- Affects normal Scapulohumeral Rhythm (SHR).
- May lead to articular and/or soft tissue shoulder dysfunction.
- May result in shoulder pathology and injury.
- May result from injury causing inhibition of scapular stabilization.

Nonspecific Response: No specific pattern of dyskinesis is associated with a specific shoulder diagnosis.

Contributing Factors

- **Bony Posture & Injury**
 - Increased Thoracic Kyphosis
 - Increased Protraction
 - Acromial Depression
 - Clavicle Fractures
 - AC Joint Injury
 - Disrupt normal progression of scapular rotation
Scapular Dyskinesis

Contributing Factors

- Muscle Function Alteration
 - Nerve Injury
 - Long Thoracic Nerve → Serratus Anterior
 - Spinal Accessory Nerve → Trapezius
 - Muscle Inhibition/Weakness
 - Common in Glenohumeral Pathology
 - Nonspecific response to shoulder pain
 - 68% RC Abnormalities
 - 94% Labral Tears
 - 100% GH Instability

- Muscle Function Alteration
 - Common in Glenohumeral Pathology
 - Nonspecific response to shoulder pain
 - 68% RC Abnormalities
 - 94% Labral Tears
 - 100% GH Instability

- Contracture/Inflexibility
 - Pectoralis Minor/Subscapularis
 - Anterior Tilted Scapula
 - GIRD
 - "Wind-Up" Effect
 - Glenoid and Scapula pulled in forward inferior direction
 - May result in ↑ protraction during arm-abducted position

- Associated Shoulder Pathology:
 - Subacromial Impingement
 - Glenohumeral Instability
 - Glenoid Labral Injury
 - Rotator Cuff Injury
Assessing Scapular Dyskinesis

Clinical Examination
- Kinetic Chain Evaluation:
 - Leg/Trunk Muscle Strength
 - Lumbar Lordotic Posture
 - Pelvic Alignment
 - Hip ROM
 - Thoracic Alignment/Posture
 - Thoracic Kyphosis, Scoliosis
 - Cervical Posture
 - Cervical Lordosis

Assessing Scapular Dyskinesis

- Examine patient from behind with arms at rest at sides.
- Examine Scapular Motion as arms are elevated and lowered within scapular plane.
- Examine Scapular Motion as arms are elevated and lowered within the sagittal plane.

Types of Scapular Dyskinesis

Type I
- Prominence of Inferior Medial Scapular Angle.
 - Primarily abnormal rotation around a transverse axis.
 - Results in excessive anterior scapular tilt.

Type II
- Prominence of entire Medial Scapular Border.
 - Results in abnormal rotation around a vertical axis.
 - Associated with excessive scapular internal rotation.

Type III
- Prominence of Superior Scapular Border.
 - Results in excessive superior scapular translation.

Type IV
- Normal, Symmetrical scapular motion.
Assessing Scapular Dyskinesis

Observational Clinical Assessment
- 4-Type Method versus Yes/No Method
- Easily available
- Wide variance of Inter-Rater Reliability
 - (4-Type) Sensitivity 10%-54%; Specificity 62%-94%
 - (Yes/No) Sensitivity 74%-78%; Specificity 31%-38%
- Limited assessment of multiple-plane asymmetries

3D EM Kinematic Analysis
- Lab-based; limited availability
- Allows for multiple-plane assessment
- Detected asymmetry may not be clinically relevant

Uhl et al; *Arthroscopy*, 25(11); 2009

Assessing Scapular Dyskinesis

Yes/No Method
- Improved Inter-Rater Agreement (79%)
 - Allows consideration beyond a single-plane of motion
 - PPV = 74%
- Displays Sensitivity (76%) & Specificity (35%) similar to other clinical shoulder exam tests.
 - Clinical SLAP tests: Mean Sensitivity 57%; Specificity 41%
 - Clinical Instability tests: Mean Sensitivity 71%; Specificity 38%
 - Clinical Impingement tests: Mean Sensitivity 68%; Specificity 69%

Scapular Dyskinesis

Prevalence of Scapular Asymmetry
- 71%-78% (3D Kinematics) of population at large
- Symptomatic vs. Asymptomatic
 - Additional Factors:
 - Ligamentous Laxity, Muscle Imbalance, Side Dominance
 - Plane of Assessment may determine clinical relevance
 - Forward Flexion Motion Asymmetry increased in Symptomatic (54%) versus Asymptomatic (14%) patients.
 - Increased Serratus Anterior activity
Effects of Scapular Dyskinesis

Loss of Retraction/Protraction
- **Retraction Loss**
 - "Cocking" point or base for arm elevation.
 - Impingement as scapula rotates inferior and anterior.
- **Protraction Loss**
 - Deceleration forces in GH Joint.
 - Functional Glenoid Anteversion.
 - Shear stresses on anterior stabilizing structures.
 - Posterior impingement.

Loss of Superior Elevation
- Decreased Acromial Elevation
 - Predisposes Subacromial Impingement.
 - Inhibition of Serratus Anterior and Lower Trapezius.

Loss of Kinetic Chain Function
- Disruption of transferal of lower extremity and core forces to the upper extremity.
 - Strength and Energy Use
 - Acceleration Velocity
References