Anterior Knee Pain (AKP) Outline

- Terminology
- Anterior Knee Pain DDx
- Anatomy Review and Patellofemoral Biomechanics
- Clinical Assessment
 - History and Physical Exam Findings
- Diagnostics
 - Review of Common AKP Diagnoses
 - Patellofemoral Instability: Patellar Dislocation, Subluxation
 - Patellofemoral Pain Syndrome (PFPS)
 - Patellar Tendinitis
 - Osgood Schlatter, Sinding-Larsen-Johansson
 - Synovial Impingement Syndromes
 - Bursitis

Terminology

- Anterior Knee Pain (AKP)
 - Nonspecific term which encompasses many diagnoses.
 - Pain can be generated from variety of anatomic structures.
 - May include Patellofemoral Pain within differential.

- Chondromalacia Patella
 - Found infrequently in the skeletally immature.
 - It is a diagnosis of degenerative change, usually it is reserved as a surgical finding.

- Patellofemoral Pain Syndrome (PFPS)
 - Indicating pain from the patellofemoral articulation itself.
 - Pain typically peripatellar, retropatellar in nature.
 - Cause is not clearly understood and may have multiple origins.
Anterior Knee Pain Differential Diagnosis

More Common Causes
- Patellofemoral Pain
- Patellar Tendonitis
- Osteochondroses (OSD, SLJ)
- Patellofemoral Instability
- Synovial Impingement
- Fat Pad Irritation
- Osteoarthritis
- Synovial Plica
- Bursitis: Pre-, Infra-, Pes
- ITBS
- Quadriceps Tendinopathy

Additional Causes
- Tumor
- Trauma
- Patellar Stress Fracture
- Insufficiency Fractures
- Osteochondritis Dissecans
- Hip Pathology
- SCFE, Stress Fracture
- Idiopathic AKP
- Psychiatric Disorders
 - Stress, Depression
 - Meniscal Tears
 - Referred Spine Pain (L4)

Anatomy Review

Hinge Joint (Primarily Flexion-Extension)

- Patella: Largest Sesamoid Bone
 - Biomechanical lever arm
 - Increases extensor mech. efficiency 1.5x
 - Centralizes divergent forces
 - Bony shield to tibiofemoral joint

Thickest articular cartilage (up to 6.5mm)
Patellofemoral Biomechanics

- During flexion, patella moves medial and engages in trochlear groove
 - Increasing area of contact with increasing flexion.
 - Increasing contact pressures with increasing flexion.
 - Maximum contact pressures at 90 degrees.

- Loaded Knee Flexion
 - Subjects the patellofemoral joint to large forces:
 - Level Walking: ½ x body wt.
 - Upstairs: 3-4x body wt.
 - Squat: 7-8x body wt.

Predisposing factors for Patellar Malalignment and Patellar Instability

- Bony Abnormalities
 - Helping to keep the patella centered in the trochlear groove is the v-shaped anatomy of patella (facets) and configuration of femoral condyles (trochlear groove)
 - Dysplasia of Trochlear Groove – various degrees, med or lat.
 - Asymmetry of patellar facets - affects patellar congruity

- Lower Extremity Malalignment
 - Patella Alta
 - Femoral Anteversion
 - Knee Valgus
 - Laterally displaced Tibial Tuberosity
 - Foot Hyperpronation

Predisposing factors for Patellar Malalignment and Patellar Instability

- Muscle and Soft Tissue Imbalances
 - Imbalance between VMO and VL
 - VMO weakness
 - Timing deficit with delayed onset of VMO strength
 - Abnormal Soft Tissue Length
 - Tightness in Quadriceps
 - Directly increase contact pressures PF joint
 - Tightness in Hamstrings, Calf
 - Constant flexion moment to PF joint
 - Tightness in Iliotibial Band (ITB)
 - Affects normal PF excursion
 - Contribute to lateral patellar tilt, excessive pressure lateral patella
Clinical Assessment: AKP History

- Presenting Symptom
 - Pain, Instability or Combination of Both

- Onset/Duration
 - Acute or Chronic; Overuse or Overload
 - Acute exacerbation of a chronic problem

- Pain
 - Location, Character, Alleviating/Aggravating factors, QHS
 - Inflammatory symptoms (morning stiffness, swelling)

- Instability
 - True Instability vs. Quadriceps Inhibitory Reflex (Due to Pain)
 - # of true episodes, under what circumstances/MOI

- Associated Problems
 - LBP, Hip pain, Prior surgeries/treatment, PMedHx

Clinical Assessment: Physical Examination

- During the exam, physician should try to reproduce the patient’s knee pain through palpation, as well as, biomechanical evaluation.

 - Observation
 - Alignment (Static and Dynamic)

 - Palpation
 - Special Orthopaedic Testing
 - Hip/Lumbar Spine
 - Neurovascular Exam

Physical Exam: Observation

- Findings are often subtle for PFPS.
- Clinical studies have NOT been able to consistently demonstrate biomechanical or alignment differences between patients with PFPS and healthy individuals

- Static Alignment
 - Identifiable when patient is NOT moving.
 - Not easily modified with conservative rehab.
 - Femoral Anteversion, Knee Position (Varum, Valgum, Recurvatum), Foot/Ankle WB position
 - Miserable Malalignment Posture (Andrish, Orthop Clin N Am, 2008)
Physical Exam: Observation

Static Alignment cont
- Common Clinical Measurement is Q-angle
- Q-angle
 - Line connecting ASIS to center of patella and line connecting center of patella to middle of anterior tibial tuberosity.
 - Angle line thought to represent the line of action of quadriceps force.
 - Normal varies from 10-22 degrees
 - PFPS has been demonstrated to be associated with a larger Q-angle (Lankhorst NE. BJSM. 2013)

Dynamic alignment
- May exist during movement as a result of poor muscular control
- Can have patient step slowly up/down from 6 stool or single leg squats
- Presence of any abnormal movements of patella as it engages into trochlea, any body sinking, trunk rotation, loss of hip control.
- Excessive contralateral hip drop
- Hip adduction and IR
- Knee abduction
- Tibial ER, hyperpronation
- Seated: J Sign : Lateral tracking of patella.

Physical Exam: Palpation

Seated exam
- Surface anatomy is best appreciated with knee flexed to 90 degrees
- Retropatellar crepitus

Supine exam
- Leg length discrepancy: >1cm adverse effect of LE with running.

Correlate point of maximal tenderness with underlying anatomical structures.

Swelling
- Intraarticular effusion versus Prepatellar
 - Intrapatellar bursitis
 - As little as 20 ml fluid can inhibit VMO function
Physical Exam: Review of a FEW Orthopaedic Tests

- **Patellar Tilt Test**
 - Supine, Knee extended, Quad relaxed: Compare height of medial patellar border to lateral patellar border. If medial border is more anterior, then there is a lateral tilt.

- **Medial/Lateral Patellar Glide**
 - Noting degree of movement relative to width of patella, > 75% translation is hypermobile.

- **Patellar Compression/Grind**
 - Direct compression into trochlea, contraction of Quadriceps

- **Patellar Apprehension Test**
 - Apply lateral pressure to patella at 30 degrees flexion. Test is positive if patient feels instability or pain.

Physical Exam: For completeness: Addtl. Orthopaedic Tests

- **Ober’s**
 - Flex knee 90 degrees and abduct, add hip extension and release
 - Positive test has tightness through ITB, tight/pain anterior hip is hip flexors.

- **Valgus/Varus stress at 0, 30 degrees**
 - MCL/LCL sprain/tear

- **Anterior/Posterior Drawer**
 - ACL/PCL sprain/tear

- **Lachman, Pivot Shift, Bounce Home**
 - ACL

- **McMurray, Apley Compression**
 - Menisci

Hip/Lumbar Spine Exam; Neurovascular Exam

- **Hip**
 - Referred pain to the knee including OA, SCFE, LCP
 - Assess gait pattern as well.

- **Lumbar Spine**
 - Referred pain from spine (L4 radiculopathy) to anterior knee.
 - History of LBP/Intervention
 - Posterior knee pain, foot pain

- **Neurovascular Exam**
 - Numbness/Tingling
 - Reflexes/Pulses
AKP Diagnostics

- Radiology is an adjunct to H&P
- Plain Radiographs: WB AP, Notch View, Lateral View (15 degrees flexion), Merchant View (30-45 degrees flexion)
 - Rule out other sources for AKP: Loose bodies, Occult Fx, Tumor
 - Anatomical variants, Bipartite Patella
 - Patella height
 - Lateral Tib/Patellar subluxation
 - Osteoarthritis
 - Trochlear Dysplasia

AKP Diagnostics

- Computed Tomography (CT)
 - Further evaluation of Trochlear Dysplasia (pre-surgical)
 - Tibial Tubercle-Trochlear Groove Distance (TT:TG)
- Magnetic Resonance Imaging (MRI)
 - MPFL/Retinaculum Tear (Patellar Dislocation)
 - Osteochondral Injury; Loose body
 - Patellar tendon; Extensor mechanism
 - Stress fracture/Insufficiency fractures
 - Ligamentous tear; Meniscal tear
 - Tumors
- Bone Scan
 - Limited use: Stress fracture

Review of Common AKP Diagnoses

- Patellofemoral Instability
 - Dislocation, Subluxation
- Patellofemoral Pain
- Patellar Tendinitis
- Osgood Schlatter, Sinding-Larsen-Johansson
- Synovial Impingement
- Bursitis
Patellofemoral Instability

- **Dislocation**
 - Complete, usually lateral displacement of patella from femoral trochlea that persists until reduced, usually by extending knee +/- medial pressure.

- **Subluxation**
 - Transient partial displacement of patella from femoral trochlea; may occur acutely, as in a dislocation, or may be transient. There is spontaneous reduction of displacement.

- **Highest risk of acute patellar dislocations in 2nd decade**
- **Recurrence Rates 15-44% after initial dislocation**
- **Mechanism of Injury – Acute injuries**
 - Valgus +/- Twisting with strong quadriceps contraction
 - 81% Sports Related; 9% Dance Related

Patellar Dislocation/Subluxation

- **Predisposing Risk Factors**
 - Variations of alignment and anatomy about PF, lower extremity
 - VMO weak; VL hypertrophy; ITB tight; patella alta; trochlear dysplasia; increased Q angle; pes planus, miserable malalignment; Positive J sign
 - (More easily seen in acute case on uninjured knee)
 - Genetic predisposition, connective tissue d/o, Ligamentous laxity
 - Increase risk of subsequent dislocation: Female sex, family history of patellar instability, history of patellar subluxation or dislocation

Patellar Dislocation/Subluxation

- **Patient History**
 - May or may not have previous sx of instability or PF pain.
 - May report lying on ground with knee flexed, feeling something out of place; felt a popping sensation
 - Either reduces on its own or with pushing medially
 - Try and obtain number of episodes/frequency/MOI
 - Swelling within first two hours for acute dislocation.
 - With subluxation, may occur with force or with everyday activities.
 - With subluxation, may have a feeling a slipping with cutting, twisting or pivoting; may have recurrent swelling.
Patellar Dislocation/Subluxation

Physical Exam
- Depends on whether patella is still dislocated or has been reduced.
 - Pre-reduction: Patella will be located over lateral femoral condyle with prominence of uncovered medial femoral condyle.
 - Post-reduction: May have large hemarthrosis with patellar hypermobility. Marked apprehension with patellar mobilization. May have associated medial ligamentous instability.
 - Hypermobile patellae, +Patellar grind/compression/tilt/apprehension. Pain medial patellar retinaculum/MPFL

Imaging
- Plain XR
 - Rule out osteochondral fracture/occult fracture
 - Unusual to still find patella dislocated (positioning will often reduce)
 - Patella alta, trochlear dysplasia, patellar tilt
- MRI
 - Assess loss of medial support structures (MPFL); Assess osteochondral fracture/occult fracture; loose bodies; Other associated injuries (MCL, meniscus)
- CT
 - Presurgical/Patellofemoral alignment; bony anatomy

Patellar Dislocation Treatment
- Reduction, PRICE, Crutches if painful WB - PWB
- Immobilize initially for comfort; 2-3 weeks (Extension)
- Transition to patellar supportive bracing
 - J, True-Pull, Breg, Playmaker
- Physical Therapy/Rehabilitation
 - Quad strength, ROM, Proprioception, CORE strength
 - Patellofemoral Rehabilitation (hip, abdomen, back)
 - Taping/Kinesiotaping
- Operative Indications (Debated - 1st time dislocation)
 - Osteochondral fracture/Loose body
 - Disruption of VMO insertion; Medial retinaculum/MPFL tear
 - Recurrent dislocation/Failure of nonoperative management
Recurrence dislocations/subluxation treatment

• Despite disability with recurrent patellar dislocations, persistence with nonsurgical treatment is warranted when
 – Dislocations are isolated or infrequent
 – Habitual or obligatory
 – Most importantly: When the existing patellar mechanics are able to accommodate the rehabilitation process.
 (Andrisch, Orthop Clin N Am, 2008)

• Surgical Intervention
 – Over 100 procedures described, lack of high quality studies.
 – No gold standard, Needs to be individualized to each patient and pathoanatomic findings which allow provoke episodes.

Patellofemoral Pain Syndrome (PFPS)

• PFPS definition and importance:
 – Average recreational runner has 37-56% incidence being injured during a year’s training.
 – Knee MOST common site.
 – PFPS constitutes nearly 25% of injuries to the knee.
 – Constellation of symptoms arising from patellofemoral compartment.
 – Pain typically retropatellar, peripatellar in nature
 – Complex and multifactorial, many times etiology is unclear
 – Many theories include overuse, overload, biomechanical, muscular
 – PFPS is the single most common condition seen by most sports medicine practitioners
 (Bruckner and Khan, Clinical Sports Medicine, 2nd Ed.)

Patellofemoral Pain Syndrome

• Predisposing Risk Factors/History
 – Same as for patellar instability
 – Biomechanics, Muscular Dysfunction (Weakness/Inflexibility)
 – Adolescents with rapid growth may have soft tissue contractures (e.g. hamstrings, hip flexors) which increase stress to PF joint
 – Overuse and Overload
 – Repeated weight bearing, impact (Running)
 – Especially hills, uneven ground, steps/stairs
 – Weight training/Training Errors leading to soft tissue microinjury: Continued strenuous activity without time for healing and repair leads to overload and microfailure.
 – Prolonged sitting (‘Theater Sign’), Sitting in tight space with knee flexed
Patellofemoral Pain Syndrome

• Patient History
 – Onset of Pain (with activity, sitting) Was there an injury?
 – True instability usually does not occur in PFPS but patients report giving way sensation.
 – This is due to reflex inhibition of quadriceps muscle secondary to pain, effusion, or deconditioning (Houghton, Ped Rheumatology. 2007)
 – Direct trauma to a flexed knee may disrupt articular cartilage so there may be a history of an inciting event leading to start of PF irritation.
 – May have snapping and popping/patellar crepitus
 – No close association between crepitus and pain
 – Johnson (1998) noted that 94% of healthy women and 45% of healthy men exhibited patellofemoral crepitus

• Physical Exam
 – Usually subtle, not usually an effusion unless a component of instability exists.
 – As discussed predisposed risk factors (Same as for instability)
 – Hypermobile patella, positive compression/grind/apprehension/tilt
 – Muscular Etiologies (Juhn, Am Fam Phys, 1999)
 – Quadriceps Weakness: VMO dysplasia: Valgus moment with one leg squat
 – Tight ITB: Positive Ober’s
 – Tight Hamstrings: Inability to fully extend at knee
 – Weakness of hip muscles (adductors, abductors, external rotators): Positive Trendelenburg
 – Tight calf muscles

• Imaging
 – Plain XR: May be normal, Lateral patellar tilt on merchant view, May have predisposing instability findings: Trochlear dysplasia, Patella Alta
 – MRI: No role initially unless diagnosis in question, helpful with persistent pain despite conservative intervention. (R/O OCD e.g.)

• Treatment
 – Patient Education
 – Rest and Activity Modification
 – Physical Therapy
 – NSAIDs
 – Knee Braces, Arch Supports/Custom Orthotics
 – McConnell Taping, Kinesiotaping
 – Surgery
Patellar Tendinitis: Jumper’s Knee

• Inflammation of patellar tendon, usually at attachment to inferior pole of patella

• History
 – Excessive jumping or bounding activity
 – High patellofemoral stress activity
 – Pain initially after activity, then noted during exercise and finally, as it progresses, at rest/everyday WB

• Physical Exam
 – TTP inferior pole patella, tendon attachment
 – Decline squat test, puts extra stress, can elicit pain
 – Look for predisposing alignment issues, weakness etc.

Patellar Tendinitis: Jumper’s Knee

• Imaging
 – XR may show osicles/enthesiophytes at tendon insertion
 – MSK US, MRI can identify chronic changes to tendon
 – Thickened tendon with increased signal

• Treatment
 – Rest, Activity Modification
 – Infrapatellar strapping may provide some symptom relief
 – Physical Therapy
 – NSAIDs, Icing
 – Platelet Rich Plasma (PRP)/Prolotherapy injections
 – Surgery: Patellar tendon debridement.

Osteochondromas: Osgood Schlatter, Sinding-Larsen-Johansson

• Osteochondromas: disorders that affect the immature and growing skeleton
 – Abnormal growth, injury, overuse of the developing growth plate and surrounding ossification centers.
 – Exact etiology unknown: genetic, repetitive trauma, vascular abnormalities, mechanical factors and hormonal imbalances.
 – Symptoms will resolve once growth plates fuse.
 – DIFFERENTIATE FROM Osteochondritis Dissecans (OCD)
 – OCD is inflammatory condition of bone and overlying cartilage (chondral) that can affect immature and mature skeletons.
 – These lesion may or may not also have effusions, locking/catching.
 – May or may not resolve with nonoperative treatment
 – OCD of knee most common: medial femoral condyle.
Osgood-Schlatter Disease

- Repetitive traction of patellar tendon on tibial tubercle ossification center or apophysis
- May cause substantial inflammation and pain
 - Up to 30% bilateral involvement
 - Nearly 50% involved in regular athletic activities
- History
 - Symptomatic patient age usually between 10-14 yo
 - Pain exacerbated by jumping activities, direct pressure/kneeling
- Physical
 - TTP, swelling, tibial tuberosity, possible deformity-prominence
 - Diagnosis usually made clinically (H&P)

Sinding-Larsen-Johansson Disease

- Similar to Osgood-Schlatter except pain is at inferior pole of patella.
- History
 - Affected patients between 10-13 yo
 - Often involved in athletics
 - Aggravated by jumping activities, kneeling
- Physical
 - TTP inferior pole of patella
 - Diagnosis usually made clinically (H&P)

Osgood-Schlatter Dz., Sinding-Larsen-Johansson Dz.

- Imaging
 - Plain X-R: May show anterior soft tissue swelling, fragmentation of apophysis.
 - MRI usually not needed unless diagnosis in question, not responsive to conservative measures. R/O other etiology.
- Treatment
 - Usually a self-limited process
 - Increased susceptibility to epiphyseal fracture has been described (Nawi, et al. 2011)
 - PRICE, activity modifications
 - Physical Therapy
 - NSAIDs
 - Infrapatellar bracing, taping
 - Surgery for refractory cases
Synovial Impingement Syndromes

- Synovium and Fat Pad are **exquisitely sensitive** with severe localized pain (Dye et al. 1998)
 - Due to nociceptive nerve fibers containing substance P identified throughout IFP and surrounding synovial tissue.
 - Substance P shown to effect pain mediation by increasing sensitivity to nociceptive signals
 - Promote inflammation via vasodilation, extravasation of plasma proteins and adhesion of leukocytes. (Dragoo et al. 2012)
 - This deep innervation supports view that IFP and its synovial lining act as sources for anterior knee pain.

- **Pathologic Plica**
- **Fat Pad Impingement**

Pathologic Plica; Synovial Plica Syndrome

- A plica is an extension of the protective synovial capsule of the knee that can become irritated, enlarged or inflamed. It can ALSO be a normal finding.
- **PATHOLOGIC plica** can be an elusive diagnosis.
 - Medial plica most commonly pathologic.
 - Can be difficult to feel on exam, find on imaging (MRI)
 - May be a diagnosis determined after diagnostic arthroscopy.

Pathologic Plica; Synovial Plica Syndrome

- **History and Physical**
 - Focal pain that impairs function in combination with a thickened, hypertrophic plica.
 - May have history of overuse (running)
 - At times, can have a history of a direct hit to the knee. May have a window period free of sx. Then develop pain symptomatic with activities like running. (Kodali et al. 2011)
 - Sometimes can be felt as a ropey cord, thickened band.
 - Might have a snapping or popping sensation.
 - Aggravated with knee flexion, relieved with extension.
 - Flexion test: Allow knee to flex with gravity from an extended position and then ask patient to stop flexion moment. This produces an eccentric quadriceps contraction which may elicit pain.
Pathologic Plica; Synovial Plica Syndrome

• **Treatment**
 - Conservative nonsurgical management can be initial treatment and is more effective when symptoms are of a shorter duration.
 - Reverse inflammation before it becomes fibrotic/chronic.
 - Aimed at decreasing inflammation of synovial capsule.
 - Activity modification, reducing aggravating activities.
 - Physical therapy, Modalities
 - NSAIDs/Steroid injection
 - Simple external patellar support
 - Surgical Intervention: Removal of plica

Fat Pad Impingement – Hoffa Syndrome

• **Infrapatellar Fat Pad (IFP) is an intracapsular, extrasynovial structure filling the anterior knee compartment.**

 Significant Pain Generator

• **History**
 - Burning or aching infrapatellar anterior knee pain

• **Physical**
 - May have swelling infrapatellar as well.
 - Pain with Hoffa maneuver: compression to fat pad on either side of patellar tendon while bringing knee into extension.

Fat Pad Impingement – Hoffa Syndrome

• **Imaging**
 - Plain XR – not helpful.
 - MRI can detect subtle areas of high signal within fat pad
 - edema, fibrosis, calcifications, infrapatellar bursitis

• **Treatment**
 - Often successfully treated nonsurgically.
 - Rest, activity modification
 - Passive taping to offload or shorten an inflamed IFP
 - Physical Therapy, Modalities – TENS, US, Cryotherapy
 - Injection (Local anesthetic with steroid)
 - Surgery for refractory cases
 - Arthroscopic resection; Variety of operative approaches
Bursitis

- Inflammation of any of various bursae around knee: typically prepatellar, pes anserine
- Prepatellar most common
 - Housemaid’s Knee
- History/Physical
 - Overuse, direct pressure, Direct blow/hit
 - Can have bleeding into bursa with trauma
 - Swelling, pain over anatomic bursa(e)
 - May be hypersensitive to touch/light trauma

Prepatellar Bursitis

- Imaging
 - Rule out associated fx if trauma.
 - Rule out other diagnosis if refractory to txmt.
- Treatment
 - Acute
 - PRICE, Knee padding (if occupational)
 - Aspiration if swelling is large, affecting gait/knee ROM
 - NSAIDs
 - Chronic or Recurrent
 - As above plus:
 - Physical therapy with modalities - US
 - Aspiration with corticosteroid injection

In Conclusion

- Anterior knee pain can be challenging to diagnose.
- Etiology of anterior knee pain is multifactorial.
- Successful treatment relies on individualized workup.
- Always encourage follow up if pain persists.
 - Especially if you have not done other imaging, children/adolescents.
References

Special Thanks to Dr. Jack Andrish and Previous Powerpoint Lectures: Carly Day MD; Scott Roberts MD; Sergio Ulloa DO; Shalinder Arneja MD.