Core Muscle Injuries

R. Robert Franks, D.O., FAOASM
Director of Concussion Program
Sports Medicine
Rothman Institute
Associate Professor Family Medicine
Thomas Jefferson University
Philadelphia, Pennsylvania
Please DO NOT Call Them Sports Hernias
Introduction

• Philadelphia athletes with core muscle injuries
 – Eagles’ Donovan McNabb
 – Eagles’ Zach Ertz
 – Eagles’ Kevin Curtis
 – Flyers’ Danny Briere
Introduction

- Incident of groin pain is 5 to 7% of all sports injuries
- Most common in soccer, ice and field hockey, tennis and Australian Rules Football
- Some studies have attributed increased diagnosis to more aggressive athletic play but other studies have cited greater awareness of core muscle injuries by Certified Athletic Trainers and Sports Medicine Physicians
Introduction

- One of least understood, inadequately defined and poorly researched affections of all sports medicine injuries
- Core muscle injuries are actually several different conditions lumped together under one common medical terminology
- Can be acute, chronic, or acute on chronic variety
- Found more commonly in male than female athletes
Differential Diagnosis

- Adductor strain
- Osteitis Pubis
- Iliopsoas Strains/Bursitis
- Stress Fractures
- Avulsion Fractures
- Hip Pathology – Labral Tear, FAI, Snapping Hip
- Nerve Compression
Anatomy

• Bony Pelvis
 – Ilium
 – Ischium
 – Pubis
 – Sacrum/Coccyx
Anatomy

• Soft Tissue
 – Fibrous attachment of pubic symphysis
 – Fibrocartilage articular disc between pubic bones with attached ligaments
 – Most important is the arcuate ligament at the anterior, inferior margin of the joint attaching to the symphysis capsule, both pubic tubercles and providing a superficial attachment for regional tendon/muscle complex
Anatomy

• Soft Tissue
 – Right and Left Rectus Abdominis/Adductor Aponeuroses
 • Meet at midline pubic symphysis containing vertical raphe forming a dense midline pubic plate
Anatomy

• Soft Tissue
 – Adductor Muscles
 • Pectineus – Anterior
 • Adductor Brevis, Gracilis, and Adductor Magnus – Posterior
Anatomy

• Soft Tissue
 – Inguinal Ring
 • Lateral to aponeuroses
 – External Oblique blending with lateral margin of Rectus Abdominus forming External Oblique Aponeuroses – superficial to inguinal canal and cephalad and lateral to ring
Anatomy

- Rectus abdominis
- External oblique
- Inguinal ligament
- Pectineus
- Adductor longus
- Transversus abdominis
- Adductor brevis

Superficial Muscles

Deep Muscles
Anatomical Balance

- Rectus Abdominis creates posterior tension
- Adductors create inferoanterior tension with core rotation and extension
- This opposition along with aponeurosis needed for anterior pelvic stability
- Disruption of this balance leads to core muscle instability and core muscle injury
Pathogenesis

• Groin injuries usually occur from the following:
 – Overuse
 – Increased shearing across the hemipelvis
 – Lumbopelvic and lower extremity muscle strength endurance, extensibility, and coordination imbalance
 – Loss of dynamic abdominal wall rotational stability
 – Loss of congenital inguinal wall weakness
 – Overall core weakness
Most Common Causes

• Hip adductor strain/tear with palpable pain at pubic bone attachment and resisted hip adduction
• Iliopsoas strain/tear with palpable pain of muscle at lower lateral abdomen or just distal to inguinal ligament. Pain often with crunch or resisted crunch. Can be co-morbid Thomas Test pain
• Rectus abdominis strain/tear with palpable pain at distal tendon or on attachment at pubic bone and pain with resisted sit up
Most Common Causes
Physical Examination Findings

- NO detectable inguinal hernia
- Inguinal canal tenderness
- Dilated superficial inguinal ring
- Pubic tubercle tenderness
- Hip adductor origin tenderness
Physical Examination Findings

• Key physical finding may be pubic tubercle tenderness and inguinal floor tear that can possibly be palpated creating pain inside the external inguinal ring
 – Pain may radiate to testicle or laterally to upper thigh
 – Aggravated by sudden movement, Valsalva, sexual activity, resisted sit up, or hip adduction
Imaging

• Traditional X-ray views include:
 – AP Pelvis
 – AP and lateral of affected hip

• X-rays can yield changes associated with:
 – FAI
 – OA
 – Ostitis Pubis
 – Avulsion Fracture
Imaging

• Traditional ultrasound is useful modality to diagnose INGUINAL HERNIA
• CT is often used to diagnose INGUINAL HERNIA
• MSK Ultrasound identifies tendonopathies and tendon/muscle tears but incomplete in looking at inflammatory and degenerative bony processes
Imaging

- MRI of Athletic Pubalgia series
 - 1.5 Tesla unit with phased array, multichannel coil gives best imaging
MRI of Athletic Pubalgia Series

• Sequences include the following:
 – Entire bony pelvis including high resolution sequences over the pubic symphysis
 – Standard coronal, sagittal and axial planes, but also coronal oblique imaging plane from anterior margin of the iliac crest forming a sagittal localizer sequence (along the arcuate line of the pelvis) needed to see the rectus abdominus/adductor longus aponeurosis and its attachment at pubic tubercle
MRI of Athletic Pubalgia Series

• Sequences include the following:
 – Large field of view sequence from umbilicus to mid thigh
 – Smaller field of view sequences focused on pubic symphysis extending through the pubic rami bilaterally
MRI of Athletic Pubalgia Series
Treatment

• Conservative:
 – Rest
 – Ice
 – NSAIDs
 – Discontinuation of offending activity
Treatment

• Conservative:
 – Physical Therapy
 • Modalities that may assist in recovery include
 – E-stim
 – Deep tissue massage
 – Active Release Therapy
 – Graston Technique
 – Iontophoresis
Treatment

• Conservative:
 – Physical Therapy
 • Focused progressive hip adductor stretching and strengthening exercises as well as extensive core muscle strengthening
 • Exercise to improve strength, endurance, coordination and appropriate hip and abdominal muscle balance as well as core stability
 – Abduction, adduction, flexion and extension exercises
 – Sit-ups
 – Wobble board
 – Sliding board
 – Fitter exercises
Treatment

• Conservative:
 – OMT
 • Focused treatment on hip/pelvis and often sacrum/SI joint
 – Physical Therapy
 • Return to sports is generally after 8-12 weeks of treatment with athlete pain free in PT and with exertion therapy
 • Athlete must be able to successfully pass sport-specific activity – cutting and smooth directional change are critical
Treatment

• Conservative:
 – Corticosteroid Injection
 • Usually done at insertion of rectus abdominis or adductor longus tendons usually at pubic tubercle
 – Prollotherapy Injection
 • Sclerosing agent injected at one of the following sites:
 – Adductor attachments
 – Conjoined tendon at pelvic rim
 – Pubic symphysis
Treatment

• Surgical
 – Exploration and repair considered when rest and non surgical treatment has been attempted UNLESS
 • True pathology elicited on MRI and conservative treatment would not be conducive to a high level athlete – i.e. compete disruption of pubic plate in ice hockey player
Treatment

• Surgical
 – Open or laparoscopic approaches can provide good results
 – Most repairs address repair of abdominal muscles, adductor muscles, or both, or fascia near the inguinal ligament.
 – Repairs that do not addresses forces causing pathology are often unsuccessful
 – Whether open or laparoscopic, repair rates vary from 63 to 95%
Treatment

• Surgical
 – Laparoscopic repair usually associated with quicker return to sports
 • Training at 4 weeks
 • Full activity at 6 weeks
Treatment

• Post-Surgical Rehabilitation
 – Good data lacking for return to activity following surgery
 – Some physicians do not do PT after surgery
Treatment

• Post-Surgical Rehabilitation
 – PT post-surgical generally consists of the following:
 • Avoidance of sharp, sudden, cutting movements
 • Lower extremity inflexibility, weakness, and lack of coordination is corrected
 • Running straight ahead at day 21
 • Sprinting without cutting at week 3
 • Full activity after laparoscopic repair in 6 to 8 weeks
 • Full activity after open repair at approximately 18 weeks
References

Photo References

1. From Antenatal Care Module – Anatomy of the Female Pelvis
2. From www.rebalancetoronto.com
3. UMEM Educational Pearls – University of Maryland School of Medicine, Department of Emergency Medicine
4. From Sports Health: sph.sagepub.com
5. From www.radsouce.us